Hartman-Mycielski functor of non-metrizable compacta

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hartman-mycielski Functor of Non-metrizable Compacta

We investigate some topological properties of a normal functor H introduced earlier by Radul which is a certain functorial compactification of the HartmanMycielski construction HM . We show that H is open and find the condition when HX is an absolute retract homeomorphic to the Tychonov cube.

متن کامل

On Topological Properties of the Hartman-mycielski Functor

(compacta) and continuous mappings was founded by Shchepin [Sh]. He described some elementary properties of such functors and defined the notion of the normal functor which has become very fruitful. The classes of all normal and weakly normal functors include many classical constructions: the hyperspace exp, the space of probability measures P, the superextension λ , the space of hyperspaces of...

متن کامل

SELECTIONS, k-METRIZABLE COMPACTA, AND SUPEREXTENSIONS

A selection theorem for set-valued maps into spaces with binary normal closed subbases is established. This theorem implies some results of A. Ivanov (see [5], [6]) concerning superextensions of k-metrizable compacta. A characterization of k-metrizable compacta in terms of usco retractions into superextensions and extension of functions is also provided.

متن کامل

Resolutions for Metrizable Compacta in Extension Theory

This is a summary of research which appears in a preprint of the same title. We prove a K-resolution theorem for simply connected CW-complexes K in extension theory in the class of metrizable compacta X. This means that if dimX ≤ K (in the sense of extension theory), n is the first element of N such that G = πn(K) 6= 0, and it is also true that πn+1(K) = 0, then there exists a metrizable compac...

متن کامل

Classical - type characterizations of non - metrizable ANE

The Kuratowski–Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is LCn−1&Cn−1 (resp., LCn−1) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings Mathematical Sciences

سال: 2008

ISSN: 0253-4142,0973-7685

DOI: 10.1007/s12044-008-0035-3